

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 490-494

Synthesis and SAR of highly potent and selective dopamine D_3 -receptor antagonists: 1*H*-Pyrimidin-2-one derivatives

Hervé Geneste, ^{a,*} Gisela Backfisch, ^b Wilfried Braje, ^a Jürgen Delzer, ^b Andreas Haupt, ^a Charles W. Hutchins, ^c Linda L. King, ^b Andreas Kling, ^a Hans-Jürgen Teschendorf, ^a Liliane Unger ^a and Wolfgang Wernet ^a

^aAbbott GmbH & Co. KG, Discovery Research, D-67008 Ludwigshafen, Germany

^bAbbott GmbH & Co. KG, DMPK, D-67008 Ludwigshafen, Germany

^cAdvanced Technology, Abbott Laboratories, IL 60064-6101, USA

Received 18 October 2005; accepted 19 October 2005 Available online 11 November 2005

Abstract—The synthesis and SAR of novel highly potent and selective dopamine D_3 -receptor antagonists based on a 1*H*-pyrimidin-2-one scaffold are described. **A-690344** antagonized PD 128907-induced huddling deficits in rat (ED₅₀ 6.1 mg/kg po), a social interaction paradigm.

© 2005 Elsevier Ltd. All rights reserved.

Drug therapy of schizophrenia has traditionally involved the use of neuroleptics which pharmacologically act as antagonists at the dopamine D₂ receptor. This has been an important basis for the 'dopamine hypothesis' of schizophrenia. However, medical treatment of dopamine related disorders is often limited by side effects as a consequence of binding to various dopamine or other related monoamine receptors. Due to its localization, the dopamine D₃ receptor subtype might be a target for the development of antipsychotics, with a reduced risk of side effects. 1 This hypothesis is supported by data reported for two selective D₃ antagonists: A-437203 (also known as BSF-201640²) and SB-277011³ (Chart 1) which exhibit efficacy in a variety of preclinical models predictive of antipsychotic activity without inducing catalepsy or raising plasma prolactin levels.

A program in our laboratories aimed at exploring further the potential of the pyrimidyl-piperazine core $(Q, Chart\ 1)$ of A-437203. Here, we present the synthesis and SAR of novel D_3 antagonists based on a 1H-pyrimidin-2-one moiety. Its structural similarity with the

Keywords: Dopamine D₃ receptor antagonists; Atypical antipsychotics; 1*H*-Pyrimidin-2-ones.

3H-pyrimidin-4-one pharmacophore of A-437203 has prompted us to evaluate the possibility of using 1H-pyrimidin-2-ones for the design of D_3 -antagonists (Chart 1).

As numerous substituted uracils are commercially available, a convenient two-step route⁴ was devised (Scheme 1): alkylation⁵ of the pyrimidin-2-one on N^1 to introduce the spacer followed by nucleophilic substitution and introduction of the piperazine-pyrimidine moiety (Q).⁶

The non commercially available substituted uracils were readily accessible using published procedures^{7–9} or modifications⁴ of them (Scheme 2). 4-Alkyl (compound **2a**) and 4-cycloalkyl (compounds **2b–d**) substituted 1*H*-pyrimidin-2-ones were prepared from the corresponding β -keto acetals^{4,10} **1a–d** by reaction^{4,7} with urea. 4-Ph derivative **3** was prepared from 2,4-dichloro-pyrimidine by selective Suzuki coupling^{8,11} and subsequent hydrolysis^{9,11} of the remaining chloride. Introduction of a cyclic amine (azetidine, piperidine) in position 4 (**6a** and **b**) proceeded via thio-derivative^{4,12} **5** in good yields (40–55%): the original procedure¹³ (described in a sealed tube) was adapted to microwave conditions.⁴ The N^3 -substituted derivatives (**8a** and **b**) were obtained by methylation⁴ of the halogenated precursors **7a** and **b** using iodomethane in the presence of KOH.

^{*} Corresponding author. Tel.: +49 621 589 3423; fax: +49 621 589 63423; e-mail: herve.geneste@abbott.com

Chart 1. Reference compounds—from A-437203 to A-690344.

Scheme 1. Reagents and conditions: (a) K_2CO_3 , 1-bromo-4-chlorobutane, DMF, 12 h, rt; (b) 2-tert-butyl-4-piperazin-1-yl-6-(trifluoromethyl)pyrimidine, 6 Et₃N, DMF, 24 h, 110 °C.

R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.

$$R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$
 $R = (a) Me, (b) cyclopr., (c) cyclobut., (d) cyclohex.$

Scheme 2. Reagents and conditions: (a) NaOMe, DEE, 3 h, rt; (b) H_2SO_4 , MeOH, 12 h, rt; (c) aq KOH (pH 8); (d) Urea, HCl, EtOH, 2 h, reflux; (e) PhB(OH)₂, Pd(PPh₃)₄, K_2CO_3 , PhCH₃, MeOH, 3 h, rt, 70%; (f) concd HCl, 1 h, 100 °C, quant.; (g) 1/2 P_2S_5 , dioxane, 1 h, reflux, quant.; (h) NH, EtOH, 1 h, 60 °C, μ W Milestone Ethos 1600, 55% (azetidine), 41% (piperidine); (i) MeI, 5 equiv KOH, DMSO, 5 h, rt, 58% (R=H); quant. (R=Me).

Receptor affinities for the compounds described have been determined in binding assays⁴ using human cloned dopamine D_3 and D_2 receptors. Compounds with a $K_i \le 10$ nmol/l and a D_3 versus D_2 selectivity of >50-fold were analyzed in vitro for their functional properties with a h D_3 -GTP γ S binding assay:¹⁴ all compounds tested displayed antagonistic activities ($E_{max} < 10\%$).

In the course of our studies¹⁵ to explore further the potential of the pyrimidyl-piperazine core (Q, Chart 1) of A-437203, a novel series of potent and selective D_3 antagonists based on a 1*H*-pyrimidin-2-one scaffold was identified. Unexpectedly, although the C-linkage of the side chain was shifted to a N-linkage when the 3*H*-pyrimidin-4-one moiety of A-437203 was replaced by a 1*H*-pyrimidin-2-one moiety (Chart 1), comparable D_3 -affinity and selectivity versus D_2 could be achieved (A-437203 and 4, Table 1).

Molecular modelling: A model for the D₃ dopamine receptor has been developed internally, based on the three-dimensional models of the D₁ and D₂ dopamine receptors, ¹⁶ by changing the residues that are different between the human sequences of the receptors. Therefore, comparative modeling of a ligand in two different receptor models (in our case D₃ and D₂) might give a clue for the observed selectivity as a result from the different interactions of the ligand with the amino acids in the binding site of each receptor model.

As exemplified with A-690344 (Fig. 1), modeling suggested a strong interaction of the carbonyl group in position 2 of the 1*H*-pyrimidin-2-one moiety with a threonine residue (Thr 368 on TM7) present in the D₃ model. In the corresponding D₂ model, this threonine is replaced by a phenylalanine residue (Phe 411) which cannot exert any H-bond donor interaction.¹⁷ The D₂ and D₃ receptor models thus support the high affinity for the D₃ receptor and the high selectivity versus the D₂ receptor of A-690344, both resulting from the interaction of the carbonyl group in position 2: favorable with Thr 368 in the D₃ model, bad with Phe 411 in the D₂ model.

4-Substitution: In analogy with former data, 1,15 a five single bond spacer length was recognized as optimal for both high D_3 affinity and high selectivity versus D_2 (data not shown). However, based on the comparison

Table 1. Variation of 4-substituent

Compound	R	K _i (nM)		Sel. versus D ₂ ^b	
		$\overline{{\rm D_3}^{\rm a}}$	D_2^a		
9	Н	12.9	447	35	
4	ОН	1.9	196	104	
10	OEt	7.4	290	39	
11	Me	4.4	307	71	
12	t-Bu	2.6	216	82	
13	V	3.7	155	41	
14		7.4	273	37	
15		4.8	302	63	
16	Ph	1.4	168	122	
6a		4.4	82.1	19	
6b	ON.	3.4	89.4	26	
A-437203		2.9	351	120	

 $^{^{\}rm a}$ Values are means of 2–3 experiments. Standard deviation of max 30% of the mean.

with the nonsubstituted derivative **9**, a 4-substituent was required for low nanomolar D_3 -affinity and high selectivity versus D_2 (Table 1). Pyrimidin-2,4-dione **4** was among the best representatives in terms of D_3 -affinity and selectivity versus D_2 (above 100-fold). H-bond donor group like OH seemed to be beneficial regarding selectivity versus D_2 when one compares **4** with OEtderivative **10**.

Surprisingly, lipophilic alkyl groups (compounds 11, 12) were shown to be also well tolerated: the more sterically

demanding t-Bu group (compound 12) exhibited both high D_3 affinity and selectivity versus D_2 . The 4-cycloalkyl analogs 13–15 and the 4-Ph analog 16 confirmed that sterically more demanding groups were advantageous in terms of selectivity versus D_2 , whereas D_3 -affinity was hardly affected. Cyclic amino groups in position 4 (6a and b) are not tolerated with respect to selectivity versus D_2 : a 3-fold improvement of D_2 -binding was observed for comparable D_3 -affinity (14 and 6a, 15 and 6b).

5-Substitution: Although a 5-substituent in the pyrimidin-2,4-dione series is not a prerequisite for high D_3 affinity and selectivity versus D_2 (compound 4), highly diverse residues are well tolerated in position 5 (Table 2: D_3 -affinity of 5 nM or lower, selectivity vs D_2 90-fold or more). The highest selectivity was obtained with R = Me (A-690344, sel. vs D_2 246-fold). Increase of steric bulk in this position (R = Et, 17) reduced the selectivity versus D_2 (89-fold). Interestingly, variation of the 5-substituent influences dramatically the physico-chemical properties of the molecule as reflected in the calculated polar surface areas (21, 110 Å² compared to 87 Å² for 18). Position 5 is thus the place of choice for finetuning—for example, to adjust the pharmacokinetic properties.

 N^3 -Methylation: N^3 -Methylation decreased D_3 -affinity ($K_i > 10$ nM, 6- to 8-fold higher than for the nonmethylated compounds) as well as D_2 -affinity (Table 3, **22** and **23** compared to **4** (Table 1) and **A-690344** (Table 2)). The selectivity versus D_2 remains thus high to moderate. An unsubstituted NH is therefore required for good affinity and selectivity. However, it is not clear whether this effect is due to additional steric hinderance introduced by the *N*-methyl group, or to the removal of a hydrogen bond donor, either the N^3 H itself or eventually the tautomeric OH-forms in position 2 and 4, their formation being blocked by the N-methylation.

A-690344 was further characterized and displayed a selectivity higher than a 100-fold versus the whole panel of targets in a broad CEREP profile. ¹⁹ Moreover, **A-690344** showed in vitro metabolic stability in liver microsomes of rat and human (>97% recovery), ²⁰ oral bioavailability, and brain penetration, and was characterized by moderate permeability in the Caco-2 model $(P_{\rm app}~1.94\times10^{-6}~{\rm cm/s}).^{21}$

In vivo efficacy was evaluated in a rat social interaction paradigm. Naturally occurring social interaction in rats (huddling) can be disrupted by a D₃ preferring agonist, such as PD 128907.²² Antipsychotics have been shown to reverse the effect of PD 128907 (at least partially).²³ **A-690344** antagonized PD 128907-induced huddling deficits in rat (ED₅₀ 6.1 mg/kg po). Deficits in huddling might represent one component of deficient social behavior and thus constitute an animal model for negative symptoms of schizophrenia.²³

In conclusion, the combination of diversely substituted 1*H*-pyrimidin-2-ones with the disubstituted pyrimidine–piperazine moiety of A-437203 has yielded a family

^b K_i D_2/K_i D_3 .

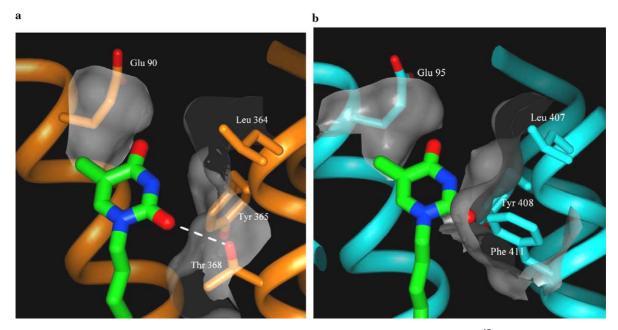


Figure 1. (a) A-690344 (in stick presentation) in the D_3 model. Interactions with the 1*H*-pyrimidin-2-one moiety.¹⁷ The semitransparent white surface represents the molecular surface of the protein and the dashed line the interaction with Thr 368. (b) A-690344 (in stick presentation) in the D_2 model. Interactions with the 1*H*-pyrimidin-2-one moiety.¹⁷ The semitransparent white surface represents the molecular surface of the protein. The ligand cannot bind in this orientation due to bad steric contacts with Phe 411.

Table 2. Variation of 5-substituent

Compound	R	K_{i} (nM)		Sel. versus D ₂ ^b	
		D_3^a	D_2^a		
4	Н	1.9	196	104	
A-690344	CH_3	1.3	320	246	
17	C_2H_5	1.7	148	89	
18	F	3.0	602	201	
19	Cl	2.3	220	97	
20	CF_3	5.4	646	119	
21	CN	4.8	473	99	

 $^{^{\}rm a}$ Values are means of 2–3 experiments. Standard deviation of max 30% of the mean.

of highly potent and very selective D_3 -antagonists. Potency and selectivity versus D_2 are supported by our molecular model. Two critical positions of the 1H-pyrimidin-2-one scaffold were identified: position 4 was shown to play an important role for the discrimination of the related D_3 and D_2 receptors, whereas position 5 was recognized as the place of choice to modify the physico-chemical properties of the molecule. In vivo efficacy was shown for **A-690344** after po administration.

Table 3. Effect of N³-methylation

Compound	R	K _i (nM)		Sel. versus D ₂ ^b
		D_3^a	D_2^a	
22	Н	11.8	610	52
23	CH_3	10.4	356	34

 $^{^{\}rm a}$ Values are means of 2–3 experiments. Standard deviation of max 30% of the mean.

Acknowledgments

We thank Stefan Maurus, Karlpeter Orth, Claudia Partos, Hermann Schülke, Carsten Thiem, and Sonja Triebel for supporting chemical synthesis, Liliana Parra (BASF AG) for helpful discussions on the synthesis of some of the substituted uracils, our analytical department, Manfred Nebel, Heidrun Gärtner, and Beate Rauprich for assay development and screening, Helga Buschbacher for in vivo testing, and Wilfried Lubisch and Hans Schoemaker for valuable comments and help in the preparation of the manuscript.

 $^{^{\}mathrm{b}}\,K_{\mathrm{i}}\;\mathrm{D}_{2}/K_{\mathrm{i}}\;\mathrm{D}_{3}.$

 $^{^{\}mathrm{b}}$ K_{i} $\mathrm{D}_{2}/K_{\mathrm{i}}$ $\mathrm{D}_{3}.$

References and notes

- 1. Hackling, A.; Ghosh, R.; Perachon, S.; Mann, A.; Höltje, H.-D.; Wermuth, C. G.; Schwartz, J.-C.; Sippl, W.; Sokoloff, P.; Stark, H. J. Med. Chem. 2003, 46, 3883, and references cited therein.
- 2. Unger, L.; Ladona, F. J. G.; Wernet, W.; Sokoloff, P.; Wicke, K. M.; Gross, G. Poster, 32nd Annual Meeting of the Society for Neuroscience, Orlando, FL, Nov 2-7, 2002; Society for Neuroscience: Washington, DC, 2002; Abstr. 894.5; Drescher, K. U.; Ladona, F. J. G., Teschendorf, H. J.; Traut, M.; Unger, L.; Wicke, K. M.; Weddige, F. K.; Freeman, A. S.; Gross, G. Poster, 32nd Annual Meeting of the Society for Neuroscience, Orlando, FL, Nov 2-7, 2002; Society for Neuroscience: Washington, DC, 2002; Abstr. 894.6.
- 3. Ashby, C. R.; Minabe, Y.; Stemp, G. J. Pharmacol. Exp. Ther. 2000, 294, 1166; Reavill, C.; Taylor, S. G.; Wood, M. D. J. Pharmacol. Exp. Ther. 2000, 294, 1154.
- 4. The preparation of the building blocks mentioned, typical procedures and assay setup are described in DE 10311065, 2004; Chem. Abstr. 2004, 141, 296038.
- 5. When the 4-substituent was a hydroxy group (exemplified 5-methyl-1*H*-pyrimidine-2,4-dione: for R^1 =OH, R²=Me in Scheme 1), the yield of the first step was limited by rapid N^1 , N^3 -dialkylation: after treatment with 3 equiv of K₂CO₃ and quenching with 1 equiv of 1-bromo-4-chloro-butane, 13% of product were isolated accompanied by N^1, N^3 -dialkylated compound (78% yield, based on electrophile). When the 4-substituent was an alkyl group (exemplified by 4-methyl-1*H*-pyrimidin-2-one: for R^1 =Me, R²=H in Scheme 1), the yield remained moderate (46%) due to simultaneous O-alkylation (12%).
- 6. The preparation of the building block QH (Scheme 1) is described in DE 19735410, 1999; Chem. Abstr. 1999, 130,
- 7. Brown, D. J.; Lee, T.-C. Aust. J. Chem. 1968, 21, 243; Jones, W. D.; Huber, E. W.; Grisan, J. M.; Schnettler, R. A. J. Heterocycl. Chem. 1987, 24, 1221.
- 8. Gong, Y.; Pauls, H. W. Synlett 2002, 829.
- 9. Benneche, T.; Undheim, K. Acta Chem. Scand. B 1984, 38, 505.

- 10. Preparation analog to: Andriamialisoa, Z.; Valla, A.; Cartier, D.; Labia, R. Helv. Chim. Acta 2002, 85, 2926.
- 11. Lamon, R. W. J. Heterocycl. Chem. 1968, 5, 837.
 12. Prepared as described above⁸ or by treatment of the urea derivative with phosphorus pentasulfide according to Lal, B.; Dohadwalla, A. N.; Dadkar, N. K.; D'Sa, A.; de Souza, N. J. J. Med. Chem. 1984, 27, 1470.
- 13. Fenick, D. J.; Carr, H. S.; Falvey, D. E. J. Org. Chem. **1995**, *60*, 624.
- 14. Wicke, K.; Garcia-Ladona, J. Eur. J. Pharmacol. 2001, 424, 85.
- 15. Geneste, H.; Backfisch, G.; Braje, W.; Delzer, J.; Haupt, A.; Hutchins, C. W.; King, L. L.; Lubisch, W.; Steiner, G.; Teschendorf, H.-J.; Unger, L.; Wernet, W. Bioorg. Med. Chem. Lett., in press.
- 16. Hutchins, C. Endocr. J. 1994, 2, 7; Hutchins, C. In Structure and Function of 7TM Receptors; Schwartz, T. W., Hjorth, S. A., Sandholm Kastrup, J., Ed.; Alfred Benzon Symposium 39, Munksgaard: Copenhagen, 1996; pp 213-226.
- 17. The interactions with the other parts of the molecule are not shown and not discussed in detail, as they have already been published for other D₃ ligands.¹
- 18. The calculation of polar surface area is based on fragment contributions: Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.
- 19. Seventy-five binding assays comprising receptors, ion channels, and enzymes: www.cerep.com.
- 20. Measured in % recovery of parent after 1 h incubation at 37 °C with liver microsomes (rat and human) in the presence of NADPH.
- 21. Artursson, P. Crit. Rev. Ther. Drug Carrier Syst. 1991, 8, 105; Hilgers, A. R.; Conradi, R. A.; Burton, P. S. Pharm. Res. 1990, 7, 902.
- 22. Adapted from Kagaya, T.; Yonaga, M.; Furuya, Y.; Hashimoto, T.; Kuroki, J.; Nishizawa, Y. Brain Res. 1996, 721, 229.
- 23. Jongen-Rêlo, A. L.; Drescher, K. U.; Teschendorf, H. J.; Rueter, L. E.; Unger, L.; Gross, G; Schoemaker, H. Poster, 34th Annual Meeting of the Society for Neuroscience, San Diego, CA, October 23-27, 2004; Society for Neuroscience: Washington, DC, 2004; Abstr. 350.2.